Lesson 25 Maclaurin Series
I. Powerseries for functions that are not the sum of a geometric series
II. Examples

Quiz wed (11/1) on lessons $23+24$

* Need
calculator
Geometric Series/
Power Series
I. Power series for functions that are not the sum of a geometric series
i.e. We cannot make the function look like

$$
\left(\frac{x^{5}}{c}\right) \frac{a}{\left(1-\left(k x^{t}\right)^{n}\right)}
$$

(T) The power series representation for the function f (centered at 0, Maclaurin Series)
has coefficients
$\sqrt{ } r^{\text {th }}$ derivative of f.

$$
C_{n}=\frac{f^{(n)}(0)(n) \text { is }}{\substack{\text { therivative } \\
n!}} \begin{aligned}
& \text { Tells me where } \\
& n!
\end{aligned}=\begin{gathered}
\text { infinite } \\
\text { polynomide }
\end{gathered}
$$

Rel: $0!=1,1!=1,2!=2 \cdot 1=2,3!=3 \cdot 2 \cdot 1=6$, etc.

Maclaurin series for $f(x)$

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

This is rad y
if $|x|<R$

$$
=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}
$$

Ex] Find the Moclaurin series for

$$
\left.\begin{array}{rl}
f(x) & =\cos (x) \\
f(x)=\cos (x) & =f^{(4)}(x) \\
f^{\prime}(x)=-\sin (x) & =f^{(5)}(x) \\
f^{\prime \prime}(x)=-\cos (x) & =f^{(6)}(x) \\
f^{\prime \prime \prime}(x)=\sin (x) & =f^{(7)}(x)
\end{array}\right] \quad \vdots
$$

$$
\begin{aligned}
& f^{(9)}(0)=f^{(4)}(0)=f(0)=\cos (0)=1 \\
& f^{(5)}(0)=f^{\prime}(0)=-\sin (0)=0 \\
& f^{(0)}(0)=f^{\prime \prime}(0)=-\cos (0)=-1 \\
& f^{(7)}(0)=f^{\prime \prime \prime}(0)=\sin (0)=0
\end{aligned}
$$

Mac series for $\cos (x)$

$$
\begin{aligned}
& 1+\frac{0}{1!} x \frac{-1}{2!} x^{2}+\frac{0}{3!} x^{3}+\frac{1}{4!} x^{4}+\frac{0}{5!} x^{5}-\frac{1}{6!} x^{4}+\frac{0}{7!} x^{7}+\frac{1}{8!} x^{8}+\cdots \\
& n=0 \quad n=1 \quad n=2 \quad n=3 \quad n=4 \\
& =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8}-\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
\end{aligned}
$$

[Ex] Find Maclauvin series for $f(x)=\frac{1}{1-x}$
If Mac. Series thm works, then this answer should be $\left.\sum_{n=0}^{\infty} \quad \begin{array}{ll}n=1 & a=1 \\ v=x\end{array}\right)$

$$
\begin{array}{ll}
f(0)=0! & f(x)=\frac{1}{1-x}=(1-x)^{-1}=0!(1-x)^{-1} \\
f^{\prime}(0)=1^{!} & f^{\prime}(x)=-1(1-x)^{-2}(-1)=(1-x)^{-2}=1!(1-x)^{-2} \\
f^{\prime \prime}(0)=2! & f^{\prime \prime}(x)=-2(1-x)^{-3}(-1)=2(1-x)^{-3}=2!(1-x)^{-3} \\
f^{\prime \prime}(0)=3! & f^{n \prime \prime}(x)=-3(2)(1-x)^{-4}(-1)=3 \cdot 2(1-x)^{-4}=3!(1-x)^{-4} \\
f^{(4)}(0)=4! & f^{(4)}(x)=-4(3)(2)(1-x)^{-5}(-1)=4 \cdot 3 \cdot 2(1-x)^{-5}=4!(1-x)^{-5} \\
& f^{(7)}(x)=7!(1-x)^{-8} \\
f^{(n)}(0)=n!
\end{array}
$$

Mac Series for $\frac{1}{1-x}$

$$
\begin{aligned}
& \frac{1}{1-x}=\frac{0!}{0}+\frac{1!}{1!} x+\frac{2!}{2!} x^{2}+\frac{3!}{3!} x^{3}+\frac{4!}{4!} x^{4}+\cdots \\
&\text { if }|x| \leftarrow) \\
&=1+x+x^{2}+x^{3}+x^{6}+\cdots \\
&=\sum_{n=0}^{\infty} x^{n}
\end{aligned}
$$

The following information will be provided to you on Exam 3:

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \operatorname{DMAMA}=1+x+x^{2}+x^{3}+\ldots \quad \text { if }|x| 4 \\
& \begin{array}{l}
\text { Radius } \\
\text { of convergence }
\end{array} \quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
& \begin{array}{l}
\begin{array}{l}
\text { of convert. } \\
\text { is } \boldsymbol{\infty} \\
\text { Test } 3 \\
\text { are } \\
\text { equal for } \\
\text { any ג }
\end{array}
\end{array}\left\{\begin{array}{l}
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
\end{array}\right. \\
& \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots
\end{aligned}
$$

II. Examples

Find a Maclaurin series for
a) $f(x)=5 \sin \left(x^{3}\right)$

$$
\begin{aligned}
& \text { Eshuet } \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \\
& \begin{aligned}
f(x)=5 \sin \left(x^{3}\right) & =5 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(x^{3}\right)^{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{5(-1)^{n}}{(2 n+1)!} x^{l n+3}
\end{aligned}
\end{aligned}
$$

Ex Use the first 4 terms of the Maclaurin Series to approximate the value.
a) $e^{(0.4)}$
st 4 terms of e^{x} series

$$
\begin{aligned}
& e^{x} \approx 1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \\
& e^{(0.4)} \approx 1+\frac{(0.4)}{1}+\frac{(0.4)^{2}}{2}+\frac{(0.4)^{3}}{6} \approx 1.49067 \\
& \quad\left(\text { Calculator says } e^{0.4} \approx 1.49182\right)
\end{aligned}
$$

(b) $\ln (0.8)$
lIst 4 terms of $\ln (1+x)$ series

$$
\ln (1+x) \approx x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}
$$

$\ln (0.8)$ using $\ln (1+x)$

$$
\begin{aligned}
0.8 & =1+x \\
-0.2 & =x \\
\ln (0.8) & =\ln (1+(-0.2)) \\
& \approx(-0.2)-\frac{(-0.2)^{2}}{2}+\frac{(-0.2)^{3}}{3}-\frac{(-0.2)^{4}}{4} \\
& \approx-0.22307
\end{aligned}
$$

(Calculator gives $\ln (0.8) \approx-0.22314$)

Ex Use the first 3 nonzero terms of the series to approximate the integral.

$$
\int_{0}^{0.2^{r 1}} \cos \left(x^{3}\right) d x
$$

Formula sheet: $\cos (x) \approx 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}$

$$
\begin{aligned}
\Rightarrow \quad \cos \left(x^{3}\right) & \approx 1-\frac{\left(x^{3}\right)^{2}}{2}+\frac{\left(x^{3}\right)^{4}}{24} \\
& =1-\frac{1}{2} x^{6}+\frac{1}{24} x^{12}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{0.2} \cos \left(x^{3}\right) d x & \approx \int_{0}^{0.2}\left(1-\frac{1}{2} x^{6}+\frac{1}{24} x^{12}\right) d x \\
& =x-\frac{1}{2} \frac{x^{7}}{7}+\left.\frac{1}{24} \frac{x^{13}}{13}\right|_{0} ^{0.2} \\
& =(0.2)-\frac{1}{2} \frac{(0.2)^{7}}{7}+\frac{1}{24} \frac{(0.2)^{13}}{13}-(0-0+0)
\end{aligned}
$$

Round toligirs

$$
\approx 0.19999 / 9908
$$

$$
\approx 0.2
$$

